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5g/* INTRODUCTION 

In this paper an attempt is made to study theoretically 
the vertical variation of atmospheric eddy viscosity (cA,) 
and its relations to the distribution of temperature and 
wind with height. An investigation of this kind seems 
desirable for several reasons. The observed values of C!,, 
vary between such wide limits that it hardly is possible 
to say what the individual observations really represent.’ 
A rational grouping and interpretation of these empirical 
data can not be accomplished until theoretical considera- 
tions have given an indication as to the connection 
between cM and the chief factors which regulate the pro- 
duction and consumption of atmospheric eddies, viz, the 
vertical stability of the stratification tmd the rate of 
sheering between superposed layers of different horizontal 
velocity . 

Recently a few systematic attempts have been made 
to calculate the vertical distribution of cN from ohser- 
vations of the variation of wind with height, the hori- 
zontal barometric gradient being known (1). The curves 
thus obtained show certain characteristic features, which 
likewise seem to require a theoretical explanation. 

The author has already on an earlier occasion (2) tried 
to show how a solution of the problem above formulated 
could be a proached; continued study of it seemed how- 
ever to inlicate that the method then used would not 
be adequate to the purpose and it was abandoned. The 
chief aid in the paper here presented was obtained by 
ada ting a certain theorem in an important paper by 
L. I? Richardson (3), giving an extension and application 
of Reynold’s Criterion of Turbulence to atmospheric sys- 
tems. This theorem has the form of an integral equation, 
expressing the rate of increase of the total energy within 
a vertical air column as the sum of the rates of inflow of 
eddies through the boundaries and production of eddies 
within the system. Richardson’s theorem is here applied 
to air columns of infinitesimal height and thus changed 
into a differential equation. In performing this trans- 
formation it was necessary to make a hypothesis con- 
cerning ‘the vertical transport of eddy energy. The one 
here made is that it follows the same law as the vertical 
transport of heat and momentum, in accordance with a 
suggestion made by Richardson (3). 

I. THE FUNDAMENTAL EQUATION 

Let 2, y, and h be the three orthogonal coordinates 
(h the height above ground); let E’ be the total turbu- 
lent energy within the atmospheric volume V and u 
and v the two horizontal mean wind components in the 
direction of x and y, respectively. Then the rate a t  
which the kinetic energy of the mean motion is trans- 
formed into eddy energy can be expressed by the formula 

wm lete table of obaerved values of CY is given b L F. Rlehardson in 
6‘WA%Lvredlc!on by Numerical Proares,” Cambridge, the &ni&rsity Press, 1922. 

11392--28?-1 

During turbulent stirring of the air a certain part of 
t,he eddy energy is transformed into potential and thermal 
energy. The rate of this energy conversion is, according 
to Richardson : 

Here cH reprewnts the eddy convectivity, g the gravity 
acceleration, T the absolute tem erature, a. the adia- 

ture. I t  is seen from (2) that in the case of superadia- 
batic lapse rate the process is reversed, i. e., potential 
and thermal energy are then transformed into turbulent 
energy. 

Through the action of molecular viscosity a certain 
fraction of E’ is transformed into heat. For this fraction 
Richardson gives the e-xpression 

batic, and a the actual, vertical B apse rate of tempera- 

(3 ) vE’, 
where the coefficient v depends upon the linear dimensions 
of the eddies. If we assume, however, that their size 
remains constant throughout the portion considered, we 
may regard Y as a constant. 

If throughout the boundary there is no transport of 
eddies to or from V ,  then the sum of the quantities (l), 
(2), and (3), each taken with its proper s i p ,  must be 
equal to the total change in E’. Thus we get Richard- 
son’s. equation 

Let us now apply (4) to an atmospheric system of 
The equation (4) then unit cross section and height dh. 

changes into 

- 1IpEdh 

Here E denotes the eddy energy per unit mass. To the 
second member of this equation there must be added an 
expression for the rate of inflow of eddy energy through 
the boundaries. 

32 1 
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I ,  

We know that turbulence gives rise to a vertical transfer 
of liorizantal momentmi with the components 

bu bo 
bh 

In the same way the eddy transfer of potential teinpera- 
ture (e) can be expressed in the form: 

- c h i  bh’ -cM - 

Now, it is knowii from experience that eddies are able to 
difluse from one layer to another; in fact, this is what 
we observe on a large scale when we watch the growth 
of the sumniertime cumulus clouds. We assunie as an 
approximate expression for the rate of this diffusion of 
eddy energy: 

b E  
dh - CE - 9  

which is analogous to the formulae for the eddy transfer 
of heat and momentum previously given. A similar 
expression has already been proposed by Richardson.2 

Taking into account this vertical diffusion of eddy 
energy, we finally obtain: 

As long as the relations between cM, cH, cE, and E are. 
unknown, the equation (6) is of little value. If chf ,  c H ,  
and cB could be expressed in terms of E, then the solu- 
tion of (6), together with certain boundary conditions, 
ought to give the vertical distribut,ion of eddy energy 
corresponding to given values of a and (a) +(&) * 

We know that in systems where the average size of 
the eddies remains constant the quantities caf, c H ,  and 
in all probability also cE, increase.with E. Furbher- 
more, we know that they disappear for E=O.  Conse- 
quently, as a first approxiniation, we niay intr0duc.e the 
expressions : 

cE =aE (7 

,blL bo 

c M = b E  
c ~ = c E ,  

where a, b, and c are constants. 
has be,en found3 that 

From observation it 

(Sa> C M  = CH 

Therefore, 

(8b) b = c .  

I n  the nniuerical examples given later the identities 
(Sa) and (8b) are est,ended to include also cg and a,  viz, 

a=b=c. (8c) 
.- _ _ _ _ _ _ _ _ _ _ ~ ~  ~ ~~~~ 

2 Richardson’s expression does not apply to t? eddy energy per mass ( E )  but to the 
“potential eddy energy per mass,’’ E($)T, referred to soue standard drusity si 
Richardson arrives at this expression through the application of thermodyramicd meth- 
ods to the study of eddies. E e  p r o w  that if a large air volume contntning numerous 
eddies is expanded &(: )I remains constant. Thus the eddies behave like the mole 
rules of a monatomic gas. $0, the schematic theory outlined in the following pnges we 
shall, however, use the simpler diffusion expression given above. 

This was flrst suggested by Taylor (Phil. Transactions. London. 1915) and kiter 
roiifirumrd by Richardson. 

< *- 

It must be kept clearly in mind that through this ashu$b- 
tioii real conditions are depicted only in their rough otrt- 
lines. This becomes still plainer if we remember that cM 
probably has two very different values for the transport 
of nionientuni parallel to the wind and across the wind 
(Richardson, “ Weather Prediction by Numerical Proe 
eqs,” page 7 3 . )  

Combining (6),  (7 ) ,  and (S), we obtain 

From this equation i t  should be possible to derive the 
vertical distribution of E RS well as the change of E with 
time, whe!i the houndary conditions are given. If the 
ecluntio!i (9) can be verified and the constants a, b, aud Y 

properly determined, then it offers one great advantage 
for the deterniinntioii of E. Computing cM and thus 
also F in the ordinary way from the hydrodynamicel 
equations, we obtain the formula 

The s-asis runs in the direction of the gradient wind. 
is the a n ~ u l a r  velocity of the earth and p the latitude. 

cN is therefore expressed as a ratio between two quantities 
which in a rather short distance from the ground rapidly 
approach zero. Thus a hydrodynamical detcrmination 
of cnf for greater heights becomes almost impossible. 
This difficulty is avoided by use of the equation (9). 

It is easil seen that oh account of the diffusion term 
a - E-  the equation (9) is no longer linear. This 
means, mathematically, that the sum of two partial solu- 
tions of (9) wil l  not give a new solution. Attempts have 
been made to differentiate between “thermal” and 
“ dynamical” turbulcnce, the latter being the turbulence 
which is supplied exclusively from the kinetic energy of 
the nicnn motion. It is easily seen horn (9) that the two 
kinds of turbulence react upon each other. Attempts to 
differentiate between them must therefore be futile. 
However, if we assume an atmosphere in which the com- 
ponents u and v of the mean motion vanish, we niay speak 
of a pure convective or thermal turbulence. In the s8me 
way i t  is possible to discuss a pure dynaniical turbulence, 
if the study is limited to an inconi ressible liquid, for 

integrals of (9) for the limiting case of pure convective 
turbulence are given. 

Before deriving these integrals we shall, however, draw 
one conclusion of a more general character from (9). 
Under stationary conditions this equation takes the form 

bh ” [  $j 

instsnce a turbulent river. In the fol lp owing section some 

(10) 
where 

a -  s6h[ E -  +$’E=O 

Now integrate (10) between HI and H2 and suppose that 

671. P !!! is equal to zero at  these limits. The result is: 
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Since E is essentially positive, the integral (12) can not 

vanish unless $' changes its sign at  least once between 
HI and Ha or remains equal to zero in the entire interval. 
In layers where $' is positive, eddies are produced; where 
$' is negative, eddies are consumed. Since consumption 
and production of eddies are proportional to $', we may 
introduce for this quantity the name "eddy productivity." 
Thus: If within a volume V the state of turbulence is 
stationary and through the boundaries no transport of 
eddies takes place, then V must contain eddy producing 
aa well as eddy consuming layers. In the atmosphere the 
eddy producing layers are generally found next to the 
ground, where the vertical increase of wind velocity and 
the temperature gradient have their greatest values. 
The upper layers, in which the wind remains more or less 
constant and the temperature lapse rate has a smaller 
value, are generally eddy consuming. 

11. CONVECTIVE TURBULENCE I N  THE FREE ATMOSPHERE 

All through this section it will be assumed that the 
The velocity components of mean motion (u, v) vanish. 

eddy productivity $' therefore reduces to 

I $'= - 6 .  - (a,-a) + v p  1 ;  
As has been pointed out, the numerical value of v 

largely depends on the size of the eddies. Assuming their 
average linear dimensions to be about 10 meters, Richard- 
son finds for v a value of 2.6.104 set.-'. This means 
that frictional forces alone would in 24 hours reduce a 
given supply of eddy energy to 0.8 of its original value. 
Now it is seen from the expression (I, 11) that the vertical 
stability of stratification acts upon the eddies in the same 
way as does the friction. Through the numerical exam- 
ples treated below it will be shown that the smothering 
mfluence of the vertical stability is far more effective than 
that of the viscosity. Therefore, it seems justifiable to 
neglect in the expression for the eddy productivity the 
term vp, a t  least when the lapse rate is not too close to the 
adiabatic. Thus we get 

$'= - 6 -  - 9 (%-a) 
(13) T 

Let us now suppose that in an unlimited atmosphere 
the fobwing temperature distribution is maintained 
through radiation. In a certain layer, between h= - H 
and A = + H, the lapse rate is constant and superadiabatic, 

a > a,. 

In the adjacent layers the lapse rate is constant and 
less than adiabatic, 

a1 < a,. 
In the intermediate layer we have a positive eddy 

productivity, 
#,'=6- -(.-ao). 9 

T 

In the surrounding layers the eddy productivity is 

T 
If the variations in T be neglected, then the quantities 
and may be considered as constants. We shall now 

try to compute a stationary distribution of eddy energy 

negative, 
$1'= - b .  -(.,-al). B 

E, that corresponds to the given distribution of eddy pro- 
ductivity. Under stationary conditions the fundamental 
equation (I, 9) has the form: 

Let us first discuss the intermediate layer. There we 
have 

(14) 
where 

J. - - - ( a - a , )  b g  
' - a  To 

To is the absolute tenipemture at  the center of this 
layer. The equation (14) can be written 

or 

Integrating with respect to E, we obtain 

Since the variation of T with height has been neglected, 
it is obvious that E must he symmetrical with regard to h. 
Thus a must vanish for h - 0 .  If we denote by E, the 
value of E at  this height, we can write (16) in the form 

bE 

Now let us introduce the quantity 
?7 fi -- 
E, - z- (17) 

Then we get 

(18) ah- 
bz 

2-- - 

or, after integration, 

In the surrounding layers we have 

where 

Treating this equation in the same way as (14), we 
obtain 

or, after integration, 
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The eddies which are generated in t8he intermediate 
layer and diffuse upward and downward will gradually 
be consumed in the surrounding layers and their energy 
will be transformed into potential and thermal energy. 
At a certain distance the dissipation of the eddy energy 

6E will be complete, i. e., we there have E=O.  Since - 6h 
in any case can not be infinite at this height, it, follows 
that 

K =  0. 

The equation @ 2 )  therefore is simplified to 

(!?!?y+. E. 

This gives, after integration, 

E=+. J ,  ( H  -h)z. 
(24) b 

H I  is the constant of integration and gives the height at 
which the eddy energy is totally dissipated. 

Let us next discuss the conditions a t  the boundaries 
between the layers. There the following requirements 
must be fulfilled: 

(1) The diffusian stream of eddy energy must be con- 
tinuous. 

( 2 )  The eddy energy E must be continuous. 
If we denote by El the value of E for h= H ,  then we 

obtain from these condit,ions and from the equations (16b) 
and (23) ,  

(25)  

01' 

(26)  

Combining (26)  

El 
=a(<  1 ) .  

and (19), w0 obtain 

Since u is a known quantity, p can be computed and we 
are therefore able to determine Eo from the equation (27). 
The result is 

F - - .  23.0 H -  " 
> O - 3  p2 

We still have to compute the constant H , .  
it follows that 

From (24) 

(29) 

or 

(30)  

,/F+H=H~ 

From the formulse (28)  and (30)  it is seen that the masi- 
mum intensity of the eddy energy is proportional to the 
square of the height of the eddy-producing layer. The 
total height of the turbulent layer is proportional to the 
height of the eddy-producing layer. In the table below 
the solution of the problem is given in a condensed form. 

(A) between h - 0  and h = H  

\ 

As an illustration of this integral a numarical example 
has been c,omputed and plotted in Figure 1.  The thick- 
ness 2H of the superadiabatic layer has been assumed to 
be 100 m., the superadiabatic lapse rate a 1.3' C. per 
100 m., and the lapse rate in the surrounding layers 
0.7O C .  It is seen from the diagram that the height. a t  
which the eddy current from the superadiabatic layer 
totally disappears, is equal to 226 m. This value is 
independent of the numerical value of the ratio -* and 
should therefore be rather reliable. The maximum value 

b 
a 

ergs of the eddy energy is equal to 0.64. lo' wrn- 
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Zn Zigure 2 a diagram is given of the elliptic integral 

which occurs in the solution given above. 

It may seem absurd and in contradiction with observed 
conditions that a superadiabatic layer like the one here 
assumed should not exert its effects through more thnn 
226 m. in each direction, especially if we compare this 
result with conditions on a clear, warm summer afternoon, 
when the convection currents from a rather thin super- 
adiabatic layer a t  the surface extend thousands of nietcm 
in height. We must, however, keep in mind, that we 
have assumed the eddy producing layer to be surroundccl 
by stable air masses with a lapse rate of 0.7' C. pcr 100 ni., 
while in the case of summer convection the superadiabatic 
gradient in the bottom layer is followed above by a n  
adiabatic lapse rate estending practically as far I/< the 
convection currents themselves. Therefore, the n u ~ n e ~ ' -  
ical example just treated illustrates how effective even 
the comparatively high gradient of 0.7O C. is in supprw+ 
ing turbulence. Thus we may conclude, that the eddie\ 
created in the lower lay- 
ers of a stable air mass 
as soon as there is wind, 
are able to diffuse up- 
ward only with great 
difficulty. In  this re- 
spect the stable atmos- 
phere differs widely from 
an homogeneous incom- 
pressible fluid, for in- 
stance a Tiver, where 
only frictional forces 
counteract the upward 
diffusion of the turbu- 
lence from the bottom 
lavers. 

Suppose the eddy-disturbance E to be limited to a region 

The sewnd equttt,ion (3) gives after integration 

moe-r 
6 in, + 1 - Gm,e-l m =  

(31) 

where 

and assume for E the anrtiytical form 

(36) E = l - m x 2 .  

In this expression 1 and m are functions of T. 
tuting this expression for E in (35), we find 

Substi- 

b ( l ' + l ) -  (rn'+in)s2 I (2Zins-2in2x3) =O, 
T ai? 

or 

( 3 7 )  (I' -i- 7) - ( io'  + in)z2 + 2Zn~ - 6in'k' = 0. 

The primes indicate differentiation with respect to 7 .  

Froin (37) i t  is evident that the following requirements 
must be fulfilled, namely: 

I '+ l+37in=O 
n~'  + in + Gin2 = 0. (3s) , 

FIG. 2 

"Returning to the fundamental equat,ion (I, 9) we shall 
now compute how an initial, limited eddy supply is 
diffused upward and downward unde.r different t,empera- 
ture conditions. Assume the atmosphere to be unlinlited 
and the vertical lapse rate to be a<a,. The cquat8ion 
then takes the form 

Here T is regarded as a constant. 
variables, 

If we introduce new 

(33) 

and 

(34) x = h  J&, 

then the equation (31) can be simplified to 

Here Z, arid )no itre the ralues of I arid in for the time 7 = 0. 
The upper limit ( H )  for the turbulent layer is given by 
the equation: 

1 
m+ 

H2=- 

01' 
1 

m Ole. 
H-'= - [ (6mo  + 1)  - 6m,e-T]:. 

Taking the square root, of each member, we obtain 

(41) 2 H = 2 H,  J6in, + 1 - G ~ n ~ e - ~ .  

2 H  is the thickness of the turbulent layer a t  the time T 
and 2H0 the thickness of the same layer a t  the time 0. 
We see that the velocity of the diffusion decreases more 
and more. 

(42) 5 Ha = f H0$/6m, + 1 

will remain unaffected by the eddies. 

3 --_____- 

The layers outside of 

The total amount of eddy energy, given by the espres- 
ion 

S 

is equal to 
H=J+=Edh -E 

4 K= 3 la. 

It is easily found that this expression has the value 

(43) 
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KO means the total eddy energy at the time t-0. The 
to td  turbulent energy decreases more and more; a t  the 
time t = a ,  when the disturbance has reached the limits 
f H,, all the eddy energy has been consumed and trans- 
formed into potential and thermal energy. 

Now suppose that the lapse rate has such a value that 
the eddy productivity disappears, i. e., let us assume 

Finally consider the cam of unstable stratifiohtion, 
where u>a,. 
The diffusion equation then has the form 

(47) 

where 
9 
T b - ( a , - a ) + v p = O .  

The diffusion equation then reduces to 

(44 1 
where 

(45) 
ut 
P 

r = - .  

23Sm 

. 

19/ m 

15.9 m 

m,r-O.O- 

m07 =O. 1- 

m , ~  - 0.5- 

mol- /.o- 

meT - LO - 
no.  30 

E=E-m#ha 

Fro. ab 

In this case the corresponding solution takes the form: 
(46) E=l-mh2 

- -  
:; (49) 

l o  ~ 1- 
71 +6m07 

.i I ,  

Fro. 3c 

-~ &er 
76m,er+ (1 - 6m0) 

I =  

moer 
6m,er + 1 - 6m: m= 

a E =  HoJ6m,er+ (1 -6m, ) .  m, m,= - We see that the disturbance travels toward infinity with 
an increasing velocity. The total eddy energy ( E )  
increases a t  the rate 

E = KoeT, 
the potential energy of the unstable stratitication rapidly 
becoming transformed into eddy energy. 

1 + 611207 
H = H,~TTGG aSt 

I t  is seen that the disturbance now will travel toward the 
infinite, but with decreasing velocity. The total eddy 
energy in this case remains constant. 
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In Figures 3a, 3b, and 3c are given graphical repre- 
sentations in (E,  h)-diagrams of this process of eddy 
diffusion during stable, neutral, and unstable stratifica- 
tions. 

I n  all three cases the initial disturbance is supposed to 
have the same form and magnitude; its maximum value 
forh=Ois 7 . 1 0 ~  -. ergs For the stable lapse rate we have 

gram 
assumed the value 0.8' C./lOO m. and for the unstable 
1.2O C./lOO m. Thus, if we put 

b - - I ,  9 = 3 . 5  
a To 

we get, in both cases, 
a 

T = 7.10-' - t .  

Duringneutral stratification the corresponding equation is 
a 

However, in that case m, has the value 7 . 1 V 5  and we 
obtain 

P 

T = - t .  
P 

a mor = 7.10-5 - f .  
P -, 

Therefore, as long as a can be assumed to have the same 
value in all three cases, corresponding values of T and 
m , ~  in figures 3 4  3b, and 3c ought to represent equal 
time intervals. 

It must be pointed out that especially in the case of 
unstable stratification the theory above given is rather 
unsatisfactory. The steadily increasing turbulence will 
constantly tend to diminish the lapse rate to the adiabatic 
and thus prevent unlimited increase of E. 

I n  the examples already treated the temperature dis- 
tribution has been regarded as constant with time. It 
is well known that the eddy transfer of heat (eclcly con- 
vection) is one of the chief factors determining the ver- 
tical temperature distribution, which therefore, contrary 
to the assumption hitherto made, generally varies with 
changes in the eddy distribution. If the potential tem- 
perature be denoted b 8, then the equation for heat 
convection by means o 9 eddies has the form 

Substituting from (I, 7), the expression for CH, we obtain 

In the general convection problem this equation must 
be solved simultaneously wit,h (I, 9). If the quantit,ies 
T and a, which occur in (I, 9) are espressed in te.rms of 
8, it is easily seen that 

Thus the equations, which determine 
vection, are 

General solutions of this system are not easily obtained. 
If, however, we assume a=c ,  and substitute a constant 
instead of e in the last term of (53a), then one simple 
integral can be obtained, which may have some bearing 
upon the rise of cumuli on summer days. Introducing 
the new variable 

. at ct 
P P  

r=-=- 

and putting 
-- -p (constant), 

we may write our equations in the form 

(54a) 

g = & [ E g ]  

Now suppose that in the layer- H <  h< + H the tem- 
perature gradient is superadiabatic, i. e., the potential 
tempertit tire fnlling, 

( 5 5 )  

In the same layer the eddy energy is nssumed to be dis- 
tributed according to the law 

e = eo - ah > o ) . 

(56) E= fi  - lh? = (H2 - v) 

For h > + If the t8emperat,ure gradient is d i a b  R t '  ic, 1. ' e . ,  

el = e,, - A .  

e2 = eo + A  

the potential temperature O1 constant,, 

For A < - H we hare unother constant poteiltial tem- 
perature 

The eddy eiiergy is zero for 71 > + H an< 7 ~ <  - H .  
The quantities R, k, and 1 are functions of T ,  which 

must be so determined that the espressiom (.55) and (56) 
for E and 0 satisfy the equations (54). 

Frorn ( S b )  and (55) we obtttin 

or 

(58) cy' = -2a7. 

In bhe same way we obtain from (54a) ,  (55) and (56) 

1;' - l'h' - aq(k - lh2) + 27k - 61"' = 0 

01' 

k' - aqk + 21k - h'(1' - a42 + 61') = 0. atmospheric con- 

E be Since this equat8ion must be fulfilled for any value of h,  
we ohriously must have _ -  

e ai 
(59) k ' - f f l $ + 2 l k = U .  

(60) 1' - alq + 612= f', 
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Eliminating I between (58) and (60), we obtain, after 
integra tion , 

where a, is the value of a for the time 7 = 0. 
way we ge.t 

In  the same 

and, from (59), (61) ,  and (62), 

(63) 

where C is a constant of integration. 
be debermined in the following way. 

This constant c,an 
We have 

or 

and, according to (57)  

Thus 

nr 

Therefore 

(64) 
For H we obtain 

(65)  

The solution may be written in the following condensd 
form : 

A e=eo-- h H 

E=- (Ha-h2) .  
4 8  

The constant velocity of difIusion is equal to 

(67) 
a 
P 2 P  

H,@ . - =@ cmlsec, 

If in both the surrounding layers the lapse tate is less 
than adiabatic, then the velocity of diffusion obviously 
has a smaller value than that computed above. 

In  Figure 4 a graphical illustration of the solution (66) 
is given. At the time T = O  the superadiabatic layer has 
a thickness of 200 m.; the difference in potential tem- 
perature between the upper and the lower air masses is 
equal to 6' C. The distribution of eddy ener y a t  

perature of the turbulent layer is represented by a bundle 
of straight lines through the point 0. It is seen from the 
figure, how the eddy layer spreads, while a t  the same 
time the superadiabatic lapse rate more and more 
decreases. 

The difference in potential temperature between the 
upper and lower air layers in the numerical example just 

different times is given by parabolae. The potentia P tem- 

given may seem rather 
g rea t .  It is therefore 
appropriate to show that 
such differences r e a l l y  
occur in the free atmos- 
phere. The kite ascent 
a t  Mount Weather for 
October 2, 1913 (4 )  gives 
between 2,711 m. and 
4,102 in., a temperature 
lapse rate of about 1.5' C. 
per 100 m. and in the 

*a/04-+ interval 3,030 m.-3,730 IE rii. even 1.7O C. This 
corresponds to an up- 
ward decrease in poten- 
tial t e m p e r a t u r e  of 
about the same magni- 
tude as that assumed 
above. The reason why 
in this case the super- 
adiabatic lapse rate can 
b e  m a i n t a i n e d  l o n g  
enough to make it possi- 
ble for us to measure it 
with our i n s t r u m e n t s  
 nay probably be sought 
in the verv stable strati- 

PI<.. 4 

ficat,ion of t,he lower air layers (hetween"1,999 m. and 
2,673 111. the ascent gives a lapse rate of 0.6O C. per 
100 ni.), through which disturbances from the ground are 
prevent,ed from diffusing upward. 

The solubion just derived may be applied to the dis- 
cussion of the cause of certain thunderstorms. It has 
been observed, especially in higher latitudes, that thun- 
derstorms frequently occur in the south quadrant of 
barometric de ressions. This is explained by Humphreys 

way: The movement of the upper 
atmospheric strata follows the isobars, i. e., in the south 
quadrant of a depression the wind aloft is westerly. The 
surface wind is-on account of friction against the 
ground-deviated toward the center of the depression. 
Thus, in the south quadrant we have a southwesterly 
surface wind which, coming from lower latitudes, gen- 
erally brings air masses which potentially are warmer 
than the masses transported with the upper west wind. 
In  this way an unstable temperature distribution is cre- 
ated, which to a certain extent corresponds to the one 
here assumed, and a more or less violent overturning of 
the air sets in. In  an unpublished paper by Mr. H. L. 
Choate, of the United States Weather Bureau, similar 

(6) in the folowing P 
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considerations have been applied as a more general ex- 
planation of cyclonic rains over the United States.' 

111. B O U N D A R Y  C O N D I T I O N  

Observations show that within the lowest air layers the 
atmospheric eddy viscosity cM very rapidly decreases the 
more we approach the ground. Since we have a,ssumed 
(1) c M = a E ,  
where a is a constant, this should indicate that E, also, 
decreases with decreasing height above the surface. 
However, the coefficient a. is a constant only as long as 
the average size of the eddies re.mains the same. Now 
the eddies in the surface layer are very small. They 
increase in size with distance from the ground. The 
above conclusion is therefore not justified. 

Taking into account the variabion of t,he size of the 
eddies, a should no longer be regarded as a constant but 
as a function of the height (h).. In  the same. way the 
coefficients b, c ,  and v 
should be replaced by of mea/l mof,on 

functions order to avoid of the h. dif- I n  . 'v 
ficulties arising from 
these more general es- 

K,ne.f,c energy Pofenha/  en.-rgy 
2 f  Jjra /. ,',L-a/,..-O 

- c 
7 
m pressions for a, b,  c ,  and 

vwemayuse the follow- s m ,c 4 
=- 

GW 
ing method: Instead rub'' enprgy - f,m/ c/a5.5 

I 
I 

of regarding the dimen- 
sions of the eddies as 

quantities, we will as- 
sume that all eddies 

two distinctly separate 
classes of entirely different magnitudes. In the first 
class we count all the large eddies of the free atmos- 
phere. Only eddies belonging to this class are of signifi- 
cance for atmospheric eddy convectivity and viscosity. 
The eddies of the second class are smaller; in the same 
way as we neglect molecular heat conduct>ion and friction 
compared with the eddy transfer of heat and momentum, 
we will also neglect the transfer of heat and mean momen- 
tum through eddies of the second class compared with 
the corresponding transport through eddies of the first 
class. It is well known that large eddies generally disin- 
tegrate into smaller and smaller eddies, which rapidly 
disappear under the action of molecular viscosity. Thus 
we obtain the scheme for energy transformations iD the 
atmosphere, illustrated above. 

We shall here make an additional assumption, namely, 
that the amount of eddy energy of the second class, 
which is formed directly from the kinetic energy of the 
mean motion or from the potential energy of stratifica- 
tion, must be small compared with the amount of eddy 
energy of the first class produced durin the same time. 

to form a large eddy, but since we know nothing about 
this process it will not be considered here. 

Under the assumptions made above, the equation (I, 6) 
can be used unaltered as an energy equation for eddies 
of the h t  class. E now means not the total eddy energy 
per unit mass but the eddy energy of the h s t  class. 
v E  gives the percentage of E, which per unit time is 
transformed into eddy energy of the second class. The 
interpretation of the other terms is o b ~ o u s .  

cal bc ie ty .  

continuously varying Cddy energy -second c/ss 

can be grouped into Mo/eco/ar energy (heafl 

It is probable that sometimes severa K small eddies join 

This pawr was presented at the April, 1924, meeting of the Amerlcan Meteorologi- 

Now let us return to the boundary conditions. If only 
eddies of the first class are considered, then the relation 
(l), where a is a constant, may still be supposed to be 
fulfilled. Since cM very rapidly goes toward zero when 
we approach the ground, i t  must be c.oncluded that the 
value of E for h=O is equal to zero. Now we will 
assume that in the same way as the kinetic energy of 
the mean motion is ve.ry rapidly converted into eddies 
at  the surfac.e and in the lowest layer, where the rate of 
sheering is strongest', in t,he same way eddies of the first 
c.lass are dissolved int'o smaller eddies along the ground 
on account of friction a t  the surface. This loss (N) of 
eddy e.nergy of the first, class a t  the ground must obvi- 
ously be, equal to t,he downward eddy diffusion current 
at  the surface, thus 

(2 ) N= (a, E%) h- 0 
b E  

(37ix,o Since Eis equal to zero for h= 0, this means that 
must be infinite. 
development for E of t8he form 

Hence we get in the lowest layer a 

a 2 bEz-M+M*h+M3h2+ bh - - . 
or 

(3) E= JYJE (1 +terms of higher order) 

IV. S T A T I O N A R Y  D I S T R I B U T I O N  OF E 

The above obtained boundary condition may now be 
used for determining the vertical distribution of E under 
stationary conditions. For that purpose we must return 
to the equation 

(1) 

where 

The eddy productivity .generally varies with the height 
(h) ,  in which case t,he integration of (1) offers great di5- 
culties. However, we may then divide the air column 
into a number of layers and to each of them attribute a 
suitable constant value of J., thus simplifying the 
integra tion. 

Now integrate (1) in the following case. Between the 
ground (h = 0) and the height H the eddy roductivit # 
is constant, positive and equal to J.,,. For R > H the eIdy 
productivity is equal to another, negative, constant, -9,. 
Thus we have to integrate the equation 

between the limits 0 and H. 
We obtain, as previously shown, 

W O  

3 =constant-- E3. 

At the ground E = O .  The constant of integration obvi- 
ously must be positive, since it is equal to the square of 
the loss of eddy energy a t  the surface. From (4) it is 
seen, that E increases more and more until it reaches a 
maximum value Em at  the height Hm. At this height 
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end therefore 

Constant= -- 3 
Thus 

( 5 )  

Substituting for E the expression 

(6 1 E=eE, 
we obtain 

or, after integration, 

Between the constants Em and H ,  we hltve thc re1 it t '  ,1011 

or 

(9) 

Between H,  and H we have 

1 I-======dz 2 a2 (h-Hm).  
J1- z3 

If we denote by E1 the value of E for h= H ,  then 

In the upper eddy consuming layer we have 

A[ E:] - #,E= 0, 

a d ,  after integration, 

(13) E- 2 (€I, - h)2, 

where H2 is the constant of integration. E and :f being 

continuous a t  the boundary between the two iayers, we 
obtain 

$1 El3 = $o[ E m 3  - El3] 
or 

and (14) it follows that 

(16) 

From (9) and (15) it follows that 

H , , , = L -  A. 
P + 4 1  

The amount of eddy energy, which per unit time is dissi- 
pated a t  the ground, is equal to 

From this formula i t  is seen that the dissipation of eddy 
energy a t  the surfme is independent of the nature of the 
ground. That may be approximately true in the case 
of pure convect,ion but is doubtless wrong as soon as 
wind is blowing and the turbulence is partly of mechanical 
origin. This becomes obvious if we compare the values 
of eddy viscosity over a rough land surface and over sea. 

However, the influence of the ground will make itself 
appare.nt in 311 indirect, vmy. If we assume that the 
wind vector (u) does not vanish a t  the surface, then 
we get the following boundary c.ondition in determining 
the mean wind distribution: 

*Q = c,. (&,. 
The vector A?, the tangential force between the wind 
and the ground, is a function of the surface wind 
bh=o and has probably the form 

(20) 

The constant in (20) gives a measure of the roughness of 
the surface. The, two conditions (19) and (20)  have the 
following consequence : Over a rough surface there will 
be very little slipping and therefore a rapid increase of 
wind velocity with height. On the conbrary, a smooth 
surface will admit a high degree of slipping. Thus the 
increase of wind wit,li height will in this case be much 
less pronounced and rest,ricted to a rather shallow layer. 
The eddy product'ivity, being proportional to the square 
of the increase. of wind velocity with height, the.refore 
has a high vslue over a continent but remains-for the 
same gradient wind-comparatively small over a smooth 
surface,' for instance, the sea. 

A numerica.1 example has been computed ancl plotted 
in Figure 5, illustrating the integral obtained above. The 
height of the eddy producing layer has been chosen as 
200 ni. Assuming within this layer an average vertical 
increase of wind velocit,y of 2 m/sec per 100 ni. a.nd a 
lapse rate of 0.6' C. per 100 m., we obtnin for the eddy 
product,ivity t'he value 

I R I =constant - I bhSo 1 

In the upper eddy consuming layer the wind velocity is 
constant. Thus we get 

$1 = +J !7 -0.4 * lo-*- 1.4 * lo-'. 

From these numerical data we compute a maximum value 
of E, 4.3.104 a t  the height 135 m. The eddy 
energy totally disappears 599 m. above ground. 

gram 
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Now let us compare our computed E curve with the 

observed conditions. The eddy energy (E) itself can not 
be directly measured, but it is possible from observations 
of the gustiness of wind to get a rough idea of the magni- 
tude of E. 

M. Robitzsch has given a tablo showing the most 
frequent gustiness amplitudes corresponding to different 

mean wind velocities (6). 
m o m -  In  the numerical example 

just given we have as- 
sumed a total increase in 
wind velocity from the 
ground upward of 4 m. 
p. s. Since the gradient 
velocity generally can be 
assumed to be twice the 
surface velocity, the lat- 
ter would in this case be 
4 m. p. s. For this aver- 
age wind the gustiness 
amplitude is about 3.7 

/W m - m. p. s. According to 
5.,oI~rp~ Robitzsch about 25 es- 

YrUms heme values of the hori- 
zontal wind velocity oc- 
cur per minute. This 

EDDY ENERGY would correspond to a 
FIQ. 5 period of about 5 sec. 

MTe may then substitute 
for the real, turbulent wind a periodically changing hori- 
zontal velocity, 

If the vertical components of the eddy velocities are 
supposed to follow the same law, then the total eddy 
energy per unit mass must be equal to 

Now, Robitzsch’s data are based upon records from an 
instrument placed about 7 rn. above ground. Our theo- 
retical solution gives a t  the same height an E-value 
several times larger, 1 2 . 9 ~ 1 0 ~  -- It must, however, 
be kept in mind, that the vertical change in E at  these 
lower levels is so great that a comparison between theo- 
retical and observed values for single points becomes 
extremely difficult . 

Since, according to (I, 7)) E and cM are proportional, 
the computed curve also represents the vacation of the 
eddy viscosity with height. It is seen, that in its general 
features this curve well agrees with Solberg’s result and 
also with some curvesfor the vertical variation of cM over 
the sea, which the author has calculated from certain 
pilot balloon observations over the North Atlantic dur- 
ing thesummers 1924 and 1925. (Fig. 6.)  The curve 
marked 8 is made up from winds with a southerly com- 
ponent and shodd therefore represent a stable stratifi- 
cation. The u curve is computed from winds with 
a northerly corn onent (air temperature below water 

unstable stratification. The curve m was obtained from 

ergs 
gram 

temperature) rtn I! should thus be characteristic for an 

4Tham dah will be puMlshod in Qeoqslbks AM- Btoakholm. 

the entire material. It is seen that the 8 curve rmhea u 
welldeveloped maximum already at  80 m. above sea 
level. In case of un- 
stable stratification the -+corn 
eddy - producing 1 a y e  r 
must evidently be much 
deeper, since the eddy ’ ~ 9 ~  

viscosity does not reach 
its maximum value with- ,%wm 

in the lowest 200 m. 
In this connection it 

may be of interest to 
discuss the order of 
magnitude of the con- C r  
stant a. Denote it 0 M a m 4 7 s  

magn a 
FIO. 0 

We have 
cbl a=z’ 

According to the example just given and to measurements 
of the gustiness we have 

.ina,gn E = 1 0‘. 
On the other hand 

magn c M =  IO1 to 10’. 
Thus 

Assume for a the value We then fhd from 
P which Figure 5 a maximum value for cM of 43 cmXsec 

is in good agreement with observations. 
The constant a being known we are able to calculate 

numerically the diffusion velocities derived in section 11. 
It is seen that they all fall within the limits which could 
be drawn a priori. Closer comparison is impossible as 
long as reliable measurements of the eddy diffusion  are^ 
wanting. 

grams 

GUMMARY 

(1) Starting from an energy equation given by L. F. 
Richardson, the author derives a differential equation for 
the atmospheric eddy energy per unit mass (E) .  The 
assumption is made that the diffusion of eddies follows 
the law 

(h =the height above ground), 

and that the coefficient cE, as well as the coefficients of 
eddy viscosity and eddy convectivity, are proportional to 
E. The conception eddy producfiwity (+) is introduced, 
and it is shown that the production of eddy energy per 
unit mass and time is equal to +.E. 

(2) Some integrals to the equation for E are given for 
the case of an unlimited atmosphere at rest. First, the 
special stationary distribution of E is derived, which 
occurs when a narrow eddy-producing layer is &rounded 
by two eddy-consuming layers. It is shown that even a 
comparatively high lapse rate of 0.7’ C./lOO m. is very 
effective in suppressing eddy diffusion currents. 

Furthermore, the diffusion of an initially limited 
edd supply during different temperature conditions is 
stu&ed. It is found that in case of stable stratification 

b E  
- c P  bh 
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the dif€usion will never reach beyond certain limits. phreys and Mr. E. A. Woolard of the United States 
During unstable stratification the eddies travel with Weather Bureau, as well as froni Dr. H. U. Sverdrup,. 
increasing velocity toward infinity. Bergen, Norway, for which he wishes to express his 

Finally the equation for E is combined with the equa- sincere gratitude. Thanks are also due to Dr: B. M. 
tion for eddy convection of heat, and an integral is de- Varney, of the Weather Bureau, who has carefully 
rived which gives the simultaneous changes in E and 0 revised the manuscript from a linguistic point of view. 
(the potential temperature) when two infinitely thick 

layer and overturning sets in. The solution is applied to (') H. 
the discussion of the cause of certain thunderstorms. 

(3) Under the assumption that close to the ground the 
large eddies of the free atmosphere are rapidly annihi- 
lated, it  is found that E here must be proportional to 45. 

(4) This boundary condition is used for deriving B sta- 
tionary distribution of E in a limited atmosphere. Since 
E and the eddy viscosity are proportional, the resulting 
curve for E can be compared with known values of the 
variation of eddy viscosity with height and fair agreement 
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A FURTHER S T U D Y  OF EFFECTIVE RAINFALL 

By J. F. VOORHEES 
[W'esther Bureau, Honolulu, Hawaii] 

5.5/.5789 : 6 3 3  

With every new attempt to find a correlation between 
rainfall and the growth or yield of some crop one is more 
deeply impressed with the need for further information 
concaning effective rainfall and the factors which de- 
termine how large a proportion of a given amount of 
precipitation may be utilized. The problem has been 
attacked, directly or indirectly, b many investigators 

that is definite enough to make a satisfactory basis for 
a correlation between preci itation and yield. Yet we 

For example, the correlation coefficient between June 
rainfall and the yield of oats a t  Akron, Colo., as calcu- 
lated by Mr. Mattice, of this bureau, is +0.91 50.03. 
This is thirty times the probable error but when we try 
to discover just what this high correlation is good for 
we find it worth very little indeed. If yields are calcu- 
lated by the least square formulfi y' = bz +a, the standard 
deviation of y- y' is found to be 59 per cent less than the 
standard deviation of y. But the departure of y' from y 
was 75 per cent of the mean value of y one-fifth of the 
time, which would make our calculated ield little if any 
better than a 
predicting y i e l g  

The amount of water used in making a crop of corn 
has been so often determined and the results are in such 
close agreement that we may feel reasonably certain that 
each pound of dry matter in a corn plant will have used 
from 250 to 400 pounds of water, depending on t8he fer- 
tility of thasoil. The larger amount will have been used 
on the poorer soil. Thus, after it has been harvested 
and weighed, we can tell about how much water a given 
crop has used. 

It has been shown also that the application of manure 
OP 'of a straw mulch wil€ increase the moisture-holding 
capacity of mbht soils, and measurements have been 
made of the amount of water available in the upper 
layers of various soils when saturated. Here, again, we 
have nothing on which a forecast could be based. 

and from several angles, but we stil s have no information 

get apparently high come P ations in many instances. 

od guess, and practicaly 9 worthless for 

In  a previous paper (this REVIEW, February, 1925) 
the writer attempted to determine the amount of effec- 
tive rainfall by a process of elimination. First, there was 
deducted a minimum amount which it was assumed would 
be lost by immediate evaporation after each rain. Second 
there was deducted the amount discharged in the streams, 
as evidently having been of no benefit, whether or not 
it might have been beneficial under different conditions. 

This left an amount which presumably escaped, either 
by transpiration or evaporation or both. It was sug- 
gested that under favorable conditions a growing crop 
might utilize the major part of this residue and that it 
might also be able to reduce the portion lost in the 
streams. 

It is now proposed to try to throw a little more light 
on the question of effective rainfall by considering a 
particular case. 

We first present the charts, A to F, showing for F o x -  
ville for each of the months March to August, inclu- 
sive, the total number of days in the 27 years of record 
which have had rainfalls of the indicated amounts. The 
abscissre represent days and the ordinates rainfall in 
inches and tenths. Each column represents the rainfall 
for one day and the total of the figures a t  the bottom gives 
all the rainy days for the given month for the 27 years. 

The heavy horizontal line at  the 0.1-inch mark cuts off 
of the bottom the amount probably lost by immediate 
evaporation. In March this amounts to 20 per cent of 
the total rainfall. Then, since the previous study showed 
that 70 per cent of the March rainfall appeared in the 
river, a line was drawn a t  a point cutting off 30 per cent 
from the bottom and leaving the 70 per cent which 
appeared in the river above. The part between these 
two lines, or 10 per cent of the total, is the amount 
normally used in transpiration or lost later by evaporation 

Next, it  seemed worth while to make some distinction 
between surface run-off and water reaching the river by 
seepage. It was assumed that all water above the mini- 
mum stage of the river, for a given month, was due to 


